Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 3, 2026
-
null (Ed.)A network may have weak signals and severe degree heterogeneity, and may be very sparse in one occurrence but very dense in another. SCORE (Ann. Statist. 43, 57–89, 2015) is a recent approach to network community detection. It accommodates severe degree heterogeneity and is adaptive to different levels of sparsity, but its performance for networks with weak signals is unclear. In this paper, we show that in a broad class of network settings where we allow for weak signals, severe degree heterogeneity, and a wide range of network sparsity, SCORE achieves prefect clustering and has the so-called “exponential rate” in Hamming clustering errors. The proof uses the most recent advancement on entry-wise bounds for the leading eigenvectors of the network adjacency matrix. The theoretical analysis assures us that SCORE continues to work well in the weak signal settings, but it does not rule out the possibility that SCORE may be further improved to have better performance in real applications, especially for networks with weak signals. As a second contribution of the paper, we propose SCORE+ as an improved version of SCORE. We investigate SCORE+ with 8 network data sets and found that it outperforms several representative approaches. In particular, for the 6 data sets with relatively strong signals, SCORE+ has similar performance as that of SCORE, but for the 2 data sets (Simmons, Caltech) with possibly weak signals, SCORE+ has much lower error rates. SCORE+ proposes several changes to SCORE. We carefully explain the rationale underlying each of these changes, using a mixture of theoretical and numerical study.more » « less
-
null; null (Ed.)Consider a large social network with possibly severe degree heterogeneity and mixed-memberships. We are interested in testing whether the network has only one community or there are more than one communities. The problem is known to be non-trivial, partially due to the presence of severe degree heterogeneity. We construct a class of test statistics using the numbers of short paths and short cycles, and the key to our approach is a general framework for canceling the effects of degree heterogeneity. The tests compare favorably with existing methods. We support our methods with careful analysis and numerical study with simulated data and a real data example.more » « less
An official website of the United States government

Full Text Available